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Abstract
A subspace of a multipartite Hilbert space is completely entangled if it contains
no product states. Such subspaces can be large with a known maximum size,
smax, approaching the full dimension of the system, D. We show that almost
all subspaces with dimension s � smax are completely entangled and then use
this fact to prove that n random pure quantum states are unambiguously locally
distinguishable if and only if n � D − smax. This condition holds for almost
all sets of states of all multipartite systems and reveals something surprising.
The criterion is identical for separable and nonseparable states: entanglement
makes no difference.

PACS numbers: 03.67.−a, 03.65.Ta

1. Introduction

This paper addresses two broad questions. What properties characterize subspaces of
multipartite quantum systems? How difficult is it to locally discriminate quantum states?
These questions are fundamental to quantum information theory, but remarkably hard to
answer in full. The sheer variety of quantum states makes a complete generalization difficult,
and this is especially clear in multipartite Hilbert spaces, which confront us with a multitude
of incompatible kinds of entanglement [1–3]. Amid such diversity, where exceptions abound
to every rule of thumb, how can we form any intuition about typical quantum properties? Do
typical properties even exist?

Yes, and this is thanks to the concentration of measure phenomenon expressed in Lévy’s
Lemma [4]. Loosely put, in Hilbert spaces of high dimension, pure quantum states chosen
uniformly at random are likely to have average properties with probability approaching one.
A property possessed by a random state with high probability might be regarded as typical;
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a property possessed by a random state with unit probability, that is, by almost all states, is
regarded as generic. When we characterize random states, and random subspaces, we are thus
studying properties of which that can be regarded as typical or generic for all. In this paper
we study generic properties. We will sketch some relevant facts concerning random states
and subspaces in section 2, but for a thorough discussion, consider [5–8] and the references
therein.

In section 3 we provide a complete answer to an important question: when are random
subspaces of a multipartite quantum system completely entangled? That is, when are they
void of product states? The answer: whenever any one subspace has this property. The
same is found true for random subspaces of a bipartite system in relation to states of a given
Schmidt rank. Highly entangled subspaces are relevant to quantum error-correcting codes
[9, 10]. Random subspaces have been studied in a wide variety of contexts, such as
entanglement measures [7], superdense coding [11] and enhancing the capacity of private
quantum channels [12]. This list of applications is unlikely to be exhaustive; as we shall show,
completely entangled subspaces are ubiquitous.

Three previous results are directly relevant to this paper. Hayden, Leung and Winter [7]
have given a sufficient condition on the dimension of a random subspace of a bipartite system
to typically contain only highly entangled states. Although only a small fraction of the overall
Hilbert space is spanned, the subspace dimension can be made surprisingly large relative to
the dimension of the subsystems. Wallach [13] and Parthasarathy [14] have independently
proven that in a multipartite Hilbert space, H = ⊗

j Hj , the maximum dimension of a
completely entangled subspace is smax = D − ∑

j (dj − 1) − 1, where dj = dimHj and
D = dimH = ∏

j dj . Parthasarathy also provides an explicit construction. Recently, Cubitt,
Montanaro and Winter [21] have extended this result in the bipartite case and obtained maximal
constructions of subspaces that are void of states with low Schmidt rank. We show that almost
all subspaces have the same properties as these maximal constructions. Thus, for example,
almost all multipartite subspaces with dimension s � smax contain no product states.

In section 4 we answer a question intimately related to the above: when is a set
of n random pure states unambiguously locally distinguishable? The answer: whenever
n � D− smax = 1+

∑
j (dj −1). State discrimination is perhaps the most elementary physical

task of all, and studying it under a restriction to local operations and classical communication
(LOCC) provides insight into the local structure of quantum information. It has attracted
much interest in recent years, but progress has been slowed by the abundance of special cases
lurking in Hilbert space. Results have been restricted mostly to low dimensional systems,
specific multipartite structures and small numbers of states [22–25]. These limitations are
overcome for random states, which allow us to provide a complete generic solution for the
unambiguous local distinguishability of pure states, over all multipartite quantum systems.
A surprising fact then emerges: in almost all cases, entanglement makes no difference as to
whether the states can be distinguished or not. Sets of random product states obey the exact
same criterion as sets of random highly entangled states.

Our result recalls a recent discovery of Duan et al [26] that every complete basis
for a multipartite Hilbert space contains some subset of exactly 1 +

∑
j (dj − 1) locally

unambiguously distinguishable states. One consequence of our result is that for almost all
bases this is maximal. We also extend our analysis to the case of multiple copies, which
allows some insight into the difficulties typically imposed by the restriction that separate
measurements be performed on parts of a quantum system. To obtain the same information,
separable measurements consume exponentially more copies of a system than are needed
globally.

Finally, in section 5 we discuss some observations and open questions.
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2. Randomness

Throughout this paper, we will use the adjectives ‘random’ and ‘generic’, and the adjectival
phrases ‘almost surely’ and ‘almost all’, to describe pure quantum states and subspaces. By
this we will mean the following.

Let H = C
D be a Hilbert space of dimension D. A pure state ψ of H is represented by a

unit vector |ψ〉 ∈ H, modulo a phase factor, eiθ |ψ〉 ∼ |ψ〉 and is thus a member of projective
Hilbert space: ψ ∈ P(H). This is just the space of lines passing through the origin in H,
or equivalently, the space of one-dimensional subspaces of H. The space of s-dimensional
subspaces of H is the Grassmannian Grs(H). Thus P(H) ∼= Gr1(H).

There is a natural uniform probability measure on Grs(H) induced by the unit Haar
measure ν [27] on the unitary group U(D). Explicitly, we fix a subspace S ∈ Grs(H) and
define µs(E) := ν({U ∈ U(D) : US ∈ E}) for any (Borel) subset E ⊆ Grs(H). This is the
unique unitarily invariant probability measure on Grs(H). The probability measure induced
on P(H) in this way will be denoted by µ. We are now in a position to define random states
and subspaces.

Definition 2.1. A random pure state ψ of the Hilbert space H is a random variable that takes
values in P(H) and is distributed according to the uniform probability measure µ on P(H).

Definition 2.2. A random (s-dimensional) subspace S of the Hilbert space H is a random
variable that takes values in Grs(H) and is distributed according to the uniform probability
measure µs on Grs(H).

A random subspace (or random pure state) can thus be generated from a fixed subspace (of
the same dimension), by applying a unitary chosen at random according to the Haar measure.
A random pure state of a multipartite Hilbert space will, with probability one, have maximum
Schmidt rank, and typically be highly entangled. A set of s � D random pure states will,
with probability one, be linearly independent. The span of these states is then a random
s-dimensional subspace. This is because the measure induced on Grs(H) is unitarily invariant,
and hence, can only be µs . If S � H is a random s-dimensional subspace, then S⊥ is a random
(D − s)-dimensional random subspace, where S ⊕ S⊥ = H.

We will occasionally use the terms ‘generic’, ‘almost surely’ and ‘almost all’. When
we say a random pure state almost surely has some specific property, then we mean that this
property occurs with unit probability. This means the property is true for all pure states except
those on a set of zero µ-measure. Thus, put simply, almost all pure states have this property;
more precisely, µ-almost all pure states have this property. The property is then called generic.
The same terminology is used for random subspaces and sets of random pure states, except
that µ is replaced by µs or the product measure µ × · · · × µ, respectively.

3. Completely entangled random subspaces

It is known that reasonably large subspaces of Hilbert spaces can be completely entangled. A
dramatic demonstration of this fact was provided by Hayden et al [7]. Let H = H1 ⊗H2 with
d2 � d1 � 3, where d1 = dimH1, d2 = dimH2, and we set D = d1d2 = dimH. Then for
any 0 < c < 1 there exists a subspace S � H of dimension

s =
⌊

c2.5

1753
D

⌋
, (1)
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containing only states with entanglement E � (1 − c) log d1 − (1/ln 2)d1/d2 bits, where
E(ψ) := −trρA log ρA with ρA = trB|ψ〉〈ψ |. Moreover, the probability for a random
subspace of dimension s to not have this property is bounded above by(

15

c

)2s

exp

(
− (D − 1)c2

32π2 ln(2)

)
. (2)

Thus, in increasing dimensions, random subspaces of dimension s (or smaller) are typically
completely entangled, with probability exponentially approaching one. These subspaces are
surprisingly large. For instance, if H1 and H2 are both n qubit systems, then S is a subspace
of dimension equal to that of a 2n − O(1) qubit system. Nevertheless, s is always a small
fraction of D.

Wallach [13] and Parthasarathy [14] independently showed that much larger dimensions
could be spanned without encompassing any product states. In particular, the following was
proven.

Theorem 3.1 (Wallach [13], Parthasarathy [14]). Let H = ⊗
j Hj be a multipartite Hilbert

space with dimHj = dj and dimH = D = ∏
j dj . Then there exists a completely entangled

subspace S � H of dimension s if and only if

s � D −
∑

j

(dj − 1) − 1. (3)

We thus define the maximum possible dimension of a completely entangled subspace:

smax := D −
∑

j

(dj − 1) − 1. (4)

In comparison to the result of Hayden et al for bipartite systems (1), ifH = H1⊗H2, whereH1

and H2 are both n qubit systems, then a completely entangled subspace can have a dimension
equal to that of a 2n − O(2−n) qubit system.

We extend theorem 3.1 in corollary 3.5 below, where we show that a random subspace of
dimension smax or less is almost surely void of product states. Two different but equivalent
approaches will be taken. First, we use a theorem of differential geometry to give an explicit,
straightforward proof. Then a refined approach is taken, which is based on the theory of
algebraic geometry. While the latter method is arguably more obscure, given the conceptual
hurdles that must be overcome, it will ultimately prove to be more powerful.

3.1. Completely entangled random subspaces: a differential geometry approach

Consider the following variation of Sard’s theorem of differential geometry [15–17]. A proof
was sketched by Chow et al [18], but consider Keerthi et al [19] for a guide to its use in
establishing genericity. Let f : X ⊆ R

M → R
N be C1, i.e. a differentiable function whose

first derivative is continuous. We say that x ∈ X is a regular point of f if the Jacobian Df (x)

has full row rank. If the set f −1(y), the preimage of y ∈ R
N , contains only regular points,

then y is called a regular value of f . The phrase ‘almost all’ is used in the sense of the
Lebesgue measure in the following.

Theorem 3.2 (Parametrized Sard theorem). Let X ⊆ R
L and Y ⊆ R

M be open, and let
f : X × Y → R

N be Cr with r > max{0, L − N}. If 0 ∈ R
N is a regular value of f , then for

almost all y ∈ Y, 0 is a regular value of f (·, y). In particular, X̃(y) := {x ∈ X : f (x, y) = 0}
is either empty or a differentiable manifold of dimension L − N , for almost all y ∈ Y .
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Corollary 3.3. Let X ⊆ R
L and Y ⊆ R

M be open, and let f : X × Y → R
N be

Cr with r > max{0, L − N}. If 0 ∈ R
N is a regular value of f and L < N , then

X̃(y) := {x ∈ X : f (x, y) = 0} is empty for almost all y ∈ Y .

The parametrized Sard theorem, or more specifically corollary 3.3, is applied to the current
problem by simply associating the variable x with an arbitrary product pure state, the variable
y with an arbitrary set of n general pure states, and then defining f as the vector function of
inner products between the product and general states. The trick is to choose x and y in such
a way that 0 is guaranteed a regular value of f . The fact that this is so easily done is a feature
of complex projective space. The problem then reduces to a parameter counting argument.

Theorem 3.4. Let H = ⊗
j Hj be a multipartite Hilbert space with dimHj = dj . Then for

µ-almost all pure states ψ1, . . . , ψn ∈ P(H), if

n >
∑

j

(dj − 1), (5)

no product state is orthogonal to all of |ψ1〉, . . . , |ψn〉.

Proof. Let {|k1〉 ⊗ · · · ⊗ |km〉}kj =1,...,dj
be an orthonormal product basis for H = ⊗m

j=1 Hj .
Parametrize an unnormalized product pure state of H as

|ξ(a1, . . . , am)〉〉 :=
∑

k1,...,km

(
a1

k1

)∗ · · · (am
km

)∗|k1〉 ⊗ · · · ⊗ |km〉, (6)

where each a
j

kj
∈ C, and thus, aj ∈ C

dj . The notation |·〉〉 will be used for the duration
of this proof to emphasize that such vectors are generally unnormalized. Parametrize an
unnormalized general pure state of H as

|η(b)〉〉 :=
∑

k1,...,km

bk1···km
|k1〉 ⊗ · · · ⊗ |km〉, (7)

where each bk1···km
∈ C, and thus, b ∈ C

D . Furthermore, define the polynomial functions

gp(a1, . . . , am; b1, . . . , bn) := 〈〈ξ(a1, . . . , am)|η(bp)〉〉 (8)

=
∑

k1,...,km

a1
k1

· · · am
km

b
p

k1···km
, (9)

for p = 1, . . . , n. Thus there is a product state orthogonal to the subspace

S(b1, . . . , bn) := span{|η(b1)〉〉, . . . , |η(bn)〉〉} (10)

if and only if g1(a
1, . . . , am; b1, . . . , bn) = · · · = gn(a

1, . . . , am; b1, . . . , bn) = 0 has a
solution in the variables a1, . . . , am.

Now define the sets

Ak1···km
:= {

(a1, . . . , am) ∈ C
d1 × · · · × C

dm : a1
k1

= · · · = am
km

= 1
}
, (11)

which specify subsets of product states,

�k1···km
:= {|ξ(a1, . . . , am)〉〉 : (a1, . . . , am) ∈ Ak1···km

}
, (12)

whose union, � := ∪k1···km
�k1···km

, includes a representative of each normalized product state,
i.e. every normalized product state can be written as |φ〉 = c|ξ 〉〉 for some |ξ 〉〉 ∈ � and c ∈ C.

5
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First consider S⊥ ∩ �1...1. Since

∂gp

∂b
q

1...1

= δqpa1
1 · · · am

1 = δqp, (13)

if (a1, . . . , am) ∈ A1...1, the Jacobian Dg(a1, . . . , am; b1, . . . , bn) has full (complex) rank for
all (a1, . . . , am) ∈ A1...1 and all b1, . . . , bn. Now set

f (x, y) := (Re(g1), . . . , Re(gn), Im(g1), . . .), (14)

where

x := (
Re

(
a1

2

)
, . . . , Re

(
a1

d1

)
, Re

(
a2

2

)
, . . . , Re

(
am

dm

)
, Im

(
a1

2

)
, . . .

) ∈ R
2(d1+···+dm−m), (15)

y := (
Re

(
b1

1...1

)
, . . . , Re

(
b1

d1...dm

)
, Re

(
b2

1...1

)
, . . . , Re

(
bn

d1...dm

)
, Im

(
b1

1...1

)
, . . .

) ∈ R
2nD. (16)

Since each gp is an analytic function in its variables, the Jacobian Df (x, y) will also
have full (real) rank for all x and y (consider the Cauchy–Riemann equations). Now with
X = R

L, Y = R
M,L = 2(d1 + · · · + dm − m),M = 2nD and N = 2n, by corollary 3.3,

X̃(y) := {x ∈ X : f (x, y) = 0} = ∅ for almost all y ∈ Y (in the sense of the Lebesgue
measure) whenever L < N . Equivalently, S⊥(y) ∩ �1...1 = ∅ for almost all y ∈ Y whenever
n >

∑
j (dj − 1).

Repeating the above argument for all sets Ak1···km
, and given that the finite union of sets of

measure zero is again of measure zero, we conclude that S⊥(y) ∩ � = ∅ for almost all y ∈ Y

whenever n >
∑

j (dj − 1).
Finally, note that we can rewrite each |η(bj )〉〉 = rj eiθj |ψj 〉, where rj � 0, 0 � θj < 2π

and |ψj 〉 is a normalized pure state specified by ψj ∈ P(H). Now since the current measure on
unnormalized pure states (essentially the Lebesgue measure on R

2D) is related to the uniform
probability measure µ on P(H) (described in section 2) through the differential

d Re(b1...1) · · · d Re(bd1...dm
)d Im(b1...1) · · · d Im(bd1...dm

) = r2D−1 dr dθ dµ(ψ), (17)

and furthermore, S(b1, . . . , bn) = span{|ψ1〉, . . . , |ψn〉}, independent of each rj and θj ,
the above will be contradicted unless S⊥ contains no product states for µ-almost all
ψ1, . . . , ψn ∈ P(H), whenever n >

∑
j (dj − 1). �

Recall that the product measure µ×· · ·×µ on P(H)×· · ·×P(H) (both n times) induces
the uniform probability measure µn on Grn(H), since the former is unitarily invariant, and
n � D random pure states almost surely span n dimensions. The following is thus equivalent
to theorem 3.4.

Corollary 3.5. Let H = ⊗
j Hj be a multipartite Hilbert space with dimHj = dj and

dimH = D = ∏
j dj . Then for µs-almost all subspaces S ∈ Grs(H), if

s � smax = D −
∑

j

(dj − 1) − 1, (18)

S contains no product states.

Random subspaces do not contain product states unless they it have to, since if s > smax,
then by theorem 3.1, all subspaces S ∈ Grs(H) contain at least one product state. Wallach
and Parthasarathy both proved this last fact using algebraic geometry. In fact, all of the above
results are consequences of this theory, which we will explain next. We end this subsection
with a straightforward corollary of theorem 3.4. This will be needed later in this paper.

6
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Corollary 3.6. Let H = ⊗
j Hj be a multipartite Hilbert space with dimHj = dj , and let c

be any positive integer. Then for µ-almost all pure states ψ1, . . . , ψn ∈ P(H), if

n > c
∑

j

(dj − 1), (19)

no product state of H⊗c = (
⊗

j Hj )
⊗c (between all subsystems) is orthogonal to all of

|ψ1〉⊗c, . . . , |ψn〉⊗c.

Proof. Let n > c
∑

j (dj − 1) and let φ be a product state of H⊗c,

|φ〉 = |φ1〉 ⊗ · · · ⊗ |φc〉, (20)

where each φj is a product state of H. Suppose that 〈φ|(|ψk〉⊗c) = 0 for all k, i.e.,

〈φ1|ψk〉〈φ2|ψk〉 · · · 〈φc|ψk〉 = 0, (21)

for k = 1, . . . , n. To satisfy all n of these equations there must be at least one product state,
φj ′ say, with 〈φj ′ |ψk〉 = 0 for m >

∑
j (dj − 1) values of k. But if the states ψk are chosen

randomly, this is almost surely impossible, since otherwise we would contradict theorem 3.4.
Thus there is no product state orthogonal to all of |ψ1〉⊗c, . . . , |ψn〉⊗c for µ-almost all choices
of ψ1, . . . , ψn ∈ P(H). �

3.2. Completely entangled random subspaces: an algebraic geometry approach

A complex projective variety X is an algebraic subset of P(CD), i.e., X can be specified as the
common zero locus of a set S ⊂ C[x1, . . . , xD] (which can be assumed finite) of homogeneous
polynomials in the coordinates of C

D ,

X = V (S) := {x ∈ P(CD) : f (x1, . . . , xD) = 0 for all f ∈ S}, (22)

where xk := 〈k|x〉 for some fixed basis {|k〉}k=1,...,D of C
D . This makes sense because a

homogeneous polynomial satisfies f (cx1, . . . , cxD) = ckf (x1, . . . , xD) by definition, and
thus, if f vanishes on any point of the line specified by x, then it vanishes for all. An example
of a variety is a projective subspace, or (s − 1)-plane:

�S := P(S) = {x ∈ P(CD) : |x〉 ∈ S}, (23)

where S ∈ Grs(CD). This is of course the locus of solutions to D − s homogeneous linear
equations: S⊥|x〉 = 0. In general, complex projective varieties are finite collections of
submanifolds of P(CD). There are many good texts on algebraic geometry, of which, Harris
[20] is perhaps the most readable introduction. We should remark, however, that some authors
reserve the term ‘variety’ for what we will be calling an irreducible variety; we follow Harris
and allow any algebraic set.

Note that the intersection of any two varieties is always another variety, since
V (S) ∩ V (T ) = V (S ∪ T ). In fact, because C[x1, . . . , xD] is a Noetherian ring, we can
show that the intersection of any number of varieties is another. Additionally, the union of any
finite number of varieties is another variety, since for any two, V (S)∪V (T ) = V (ST ), where
ST = {fg : f ∈ S, g ∈ T }. The empty set and entire space are also varieties: ∅ = V ({1}) and
P(CD) = V (∅). These properties define a topology on P(CD), called the Zariski topology,
where the subvarieties X ⊆ P(CD) are defined as the closed sets, or more formally, the
Zariski closed sets. A Zariski open set Xc is then the complement in P(CD) of some variety
X. We should remark here, however, that the Zariski topology is only a formal construct of
algebraic geometry and reflects little of the usual topology of complex projective space. Any
nonempty Zariski open set is both of full µ-measure and dense in the usual topology, being
the complement of a finite collection of proper submanifolds of P(CD).

7
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A variety X is called irreducible if for each pair of subvarieties Y,Z ⊆ X such that
Y ∪ Z = X, either Y = X or Z = X. Any (s − 1)-plane, for example, from a single point up
to the entire space itself is an irreducible variety. The concept of dimension can be defined for
irreducible varieties. There are various equivalent definitions, three of which are as follows.

Definition 3.7 (Harris [20, p 134]). The dimension of an irreducible complex projective variety
X ⊆ P(CD), denoted by dim X, can be defined in three equivalent ways:

(1) dim X is the smallest integer d such that there exists a (D − d − 2)-plane disjoint from X.
(2) dim X is the smallest integer d such that the general (D − d − 2)-plane is disjoint from X.
(3) dim X is that integer d such that the general (D − d − 1)-plane intersects X in a finite set

of points.

This means dim �S = dimS−1, and in particular, dim P(CD) = D−1. The equivalence
of these definitions should be shown, but we will take them as fact. All three indirectly imply
something important about the number of product pure states contained in a subspace of
multipartite Hilbert space.

Consider definition 3.7.1 for example. Define σ : P(Cd1) × P(Cd2) → P(Cd1d2) by
σ(x, y) = z where zjk = xjyk . The image of this map �d1,d2 := σ(P(Cd1) × P(Cd2)) is
then a variety, called the Segre variety. It is the locus of solutions to the quadratic equations
zij zkl − zilzkj = 0. Importantly, σ defines the Segre embedding of the Cartesian product of
two projective spaces into a larger projective space. It shows how the Cartesian product of
two varieties, X × Y ⊆ P(Cd1) × P(Cd2), can be considered another variety in the larger
space, σ(X × Y ) ⊆ P(Cd1d2). If X and Y are irreducible, then so is σ(X × Y ), with
dim σ(X × Y ) = dim X + dim Y . In particular, �d1,d2 is irreducible with dimension

dim �d1,d2 = dim P(Cd1) + dim P(Cd2) = (d1 − 1) + (d2 − 1). (24)

Now define the general Segre variety �d1,...,dm
:= σ

(
�d1,...,dm−1 × P(Cdm)

)
recursively. Then

dim �d1,...,dm
=

∑
j

(dj − 1). (25)

Finally, given that �d1,...,dm
⊆ P(CD),D = ∏

j dj is really just the set of product states for
the multipartite Hilbert space H = ⊗

j C
dj , theorem 3.1 is a straightforward consequence of

definition 3.7.1.
Now consider definition 3.7.2. We first need to describe what is meant by a ‘general’

(s−1)-plane. An algebraic subset of the Grassmannian Grs(CD) can be viewed as a projective
variety under the Plücker embedding. We refer to Harris [20] for the details, but for our
purposes, simply note that there is a Zariski topology on Grs(CD) analogous to that for P(CD).
Now when we say that the general (s − 1)-plane has some property, we mean that the subset
of (s − 1)-planes with this property, {�S}S∈S , is specified by a parameter set S ⊆ Grs(CD)

that contains a nonempty Zariski open subset of Grs(CD). This means S has full µs-measure.
Thus, given the dimension of the Segre variety (25), corollary 3.5 (and theorem 3.4) becomes
a straightforward consequence of definition 3.7.2.

Finally, consider the last definition of dimension, definition 3.7.3. As implied by this
variation, for any irreducible variety X, the general (D − dim X − 1)-plane intersects X at a
finite nonzero number of points. This number is the degree of the variety.

Definition 3.8 (Harris [20, p 225]). The degree of an irreducible complex projective variety
X ⊆ P(CD), denoted by deg X, is the number of points at which the general (D −dim X −1)-
plane intersects X.
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It is in fact a feature of complex projective space that any two irreducible varieties,
X, Y ⊆ P(CD), must intersect whenever dim X + dim Y � D − 1 (theorem 3.1 is partly based
on this fact). In the case of the Segre variety,

deg �d1,...,dm
=

(∑
j (dj − 1)

)
!∏

j (dj − 1)!
, (26)

which is derived recursively with the help of Harris [20, Ex 19.2]. The following now
generalizes corollary 3.5.

Corollary 3.9. Let H = ⊗
j Hj be a multipartite Hilbert space with dimHj = dj and

dimH = D = ∏
j dj . Then for µs-almost all subspaces S ∈ Grs(H), the number of product

states contained in S is exactly⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if s � smax = D − ∑
j (dj − 1) − 1;( ∑

j (dj − 1)
)
!∏

j (dj − 1)!
, if s = smax + 1;

∞, otherwise.

(27)

3.3. Random subspaces void of states with low Schmidt rank

Let H = H1 ⊗H2 be a bipartite Hilbert space of dimension D = d1d2, where dimHj = dj . A
pure state |ψ〉 ∈ H is said to have Schmidt rank r if the d1 ×d2 matrix M(ψ) with components
[M(ψ)]jk = (〈j |⊗〈k|)|ψ〉 has rank r. This means the Schmidt decomposition of |ψ〉, defined
by the singular value decomposition of M(ψ), has r terms:

|ψ〉 =
r∑

l=1

√
λl|ul〉 ⊗ |vl〉, (28)

given the singular value decomposition [M(ψ)]jk = ∑r
l=1

√
λl〈j |ul〉〈vl

∗|k〉 (conjugation
in the standard basis). All bipartite entanglement measures are functions of the Schmidt
coefficients λl , one of which is the Schmidt rank.

Theorem 3.1 gives the maximum dimension of a subspace S � H containing no states
of Schmidt rank 1. What about subspaces void of states with Schmidt rank r or less? This
scenario was studied by Cubitt, Montanaro and Winter [21]. We will now briefly mention
what algebraic geometry implies.

The determinantal variety is defined as

Mr := {x ∈ P(Cd1d2) : rank M(x) � r}, (29)

which is the common zero locus of the (r + 1) × (r + 1) minor determinants of M(x). Note
that M1 = �d1,d2 , the Segre variety. In general, Mr is the set of states with Schmidt rank r or
less. From Harris [20, pp 151 and 243],

dim Mr = d1d2 − (d1 − r)(d2 − r) − 1, (30)

and for d2 � d1 > r ,

deg Mr =
d1−r−1∏

j=0

(d2 + j)!j !

(r + j)!(d2 − r + j)!
. (31)

The following can thus be deduced.
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Corollary 3.10 (Cubitt et al [21]). Let H = H1 ⊗ H2 be a bipartite Hilbert space with
dimHj = dj . Then there exists a subspace S � H of dimension s, completely void of states
with Schmidt rank r or less, if and only if

s � (d1 − r)(d2 − r). (32)

Corollary 3.11. Let H = H1 ⊗ H2 be a bipartite Hilbert space with dimHj = dj , where
d2 � d1. Then for µs-almost all subspaces S ∈ Grs(H), the number of states with Schmidt
rank r or less contained in S is exactly⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if s � s ′
max = (d1 − r)(d2 − r),

d1−r−1∏
j=0

(d2 + j)!j !

(r + j)!(d2 − r + j)!
, if s = s ′

max + 1,

∞, otherwise.

(33)

4. Local unambiguous state discrimination

Pure state discrimination is the task of identifying the state of a quantum system, ψ?, given
that it is one of a finite known set of possibilities, � = {ψ1, . . . , ψn}. Measurements may be
performed on the system, and its state deduced from the results. If the system is multipartite,
we can restrict these measurements to local operations on each subsystem, coordinated via
classical communication. This restriction is abbreviated LOCC, and is particularly important
in quantum information theory, providing the context in which entanglement is a useful
resource.

‘Unambiguous’ state discrimination is the task of obtaining certain knowledge of the state
[28–30]. When the states in � are nonorthogonal, this certainty when successful involves
a commensurate risk of failure. The risk is significant: educated guesswork is correct more
often than an unambiguous discrimination yields a definite answer. But guesses can be wrong,
whereas unambiguous identifications are infallible. It is not obvious a priori that unambiguous
discrimination should be possible at all. If physical states cannot be perfectly distinguished,
why should we expect to separate them with any probability? The classical analogues of
nonorthogonal quantum states are overlapping probability distributions on phase space, and
these cannot be unambiguously distinguished. In this sense, unambiguous state discrimination
is inherently nonclassical.

Linearly independent quantum states can always be globally unambiguously
distinguished, but this is not the case locally. (For example, the Bell states can be
perfectly distinguished globally, but cannot be unambiguously distinguished using LOCC.)
Nevertheless, Ji, Cao and Ying [32] showed that any pair of pure states is equally
unambiguously distinguishable locally and globally. Bandyopadhay and one of us [33] showed
that triplets of quantum states always contain at least one locally identifiable state. Duan et al
[26] showed that any basis of a multipartite Hilbert space, H = ⊗

j Hj where dimHj = dj ,
always contains some locally unambiguously distinguishable subset with 1 +

∑
j (dj − 1)

members. They have also presented a fascinating construction for complete bases of entangled
states that are locally unambiguously distinguishable. Generalizing from these specific results
is difficult, as the class of LOCC operations is mathematically complicated. We aim at the
next best thing: a solution for almost all sets of quantum states.

Every LOCC protocol amounts to some general quantum operation applied to a
multipartite Hilbert space H. Since state discrimination is concerned only with the outcomes

10



J. Phys. A: Math. Theor. 41 (2008) 375305 J Walgate and A J Scott

of this operation, whose probabilities are described by a positive operator valued measure
(POVM), unambiguous local distinguishability can be defined in the following way.

A POVM is a set of positive operators {Ek}k which sum to the identity:
∑

k Ek = 1.
POVMs describe the outcome statistics of general quantum operations. The outcomes are
labeled by the integer k. An LOCC decomposable POVM is one which describes an operation
on H that can be implemented by local operations and classical communication.

Definition 4.1. The n pure states ψ1, . . . , ψn of the multipartite Hilbert space H are
unambiguously locally distinguishable if and only if there exists an LOCC decomposable
POVM {Ek}k=0,...,n on H with the property that,

〈ψj |Ek|ψj 〉 = 0 if and only if j �= k, (34)

whenever k > 0.

An outcome k > 0 unambiguously identifies the state ψk , since no other member of � can
produce this result. The outcome 0 identifies no state. For any LOCC protocol, every operator
Ek is separable, and can be expressed as a weighted sum of projectors onto pure product states:
Ek = ∑

l wklPkl . The set of all these projectors {wklPkl}k,l is a POVM describing a separable
quantum measurement on H, but not necessarily one that can be implemented using LOCC.
However, for any finite set of product state projectors {Pl}l , we can assign nonzero weights w′

l

such that the POVM
{
w′

lPl , 1 − ∑
l w

′
lPl

}
l

does describe an LOCC protocol. The following
condition is then a consequence, first observed by Chefles:

Condition 4.2 (Chefles [31]). Any n pure states ψ1, . . . , ψn of a multipartite Hilbert space H
are unambiguously locally distinguishable if and only if there exist n product states φ1, . . . , φn

of H with the property that

〈φj |ψk〉 = 0 if and only if j �= k. (35)

This condition addresses whether a set of states is unambiguously locally distinguishable
or not. It does not indicate the probability with which this might be achieved, only whether
or not this probability is nonzero. This qualitative question is all that we will consider in this
section. We discuss the quantitative problem in section 5.

Clearly, for any �, searching the set of all product states on H for states with the necessary
properties is far from trivial. However, with the aid of theorem 3.4 it is simple to prove that
the local unambiguous distinguishability of almost all sets of states can be judged solely by
their number in relation to their multipartite structure.

Theorem 4.3. Let H = ⊗
j Hj be a multipartite Hilbert space where dimHj = dj . Then the

members of almost all sets of n pure states of H are locally unambiguously distinguishable, if
and only if

n � 1 +
∑

j

(dj − 1). (36)

Proof. Let � = {ψ1, . . . , ψn} ⊂ P(H). Define �1 := �\{ψ1}, the subset of � including all
members but ψ1, and S1 := span{|ψ〉 : ψ ∈ �1}, the subspace of H spanned by members of
�1. Now let S⊥

1 be the complement of S1 in H, i.e. H = S1 ⊕ S⊥
1 , and define �1 ⊂ P(S⊥

1 ) to
be the set of all product states orthogonal to S1.

Suppose n > 1 +
∑

j (dj − 1). From theorem 3.4, �1 = ∅ for almost all choices of
� ⊂ P(H). In such cases there is no product state φ1 with 〈φ1|ψk〉 = 0 for all k �= 1. Thus �

cannot satisfy condition 4.2 and is therefore not locally unambiguously distinguishable.
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Now suppose n � 1 +
∑

j (dj − 1). From theorem 3.1, �1 �= ∅ for all choices of �.
Now since ψ1 was chosen at random, independently from the members of �1, and therefore
independently from the members of �1, for any product state φ1 ∈ �1 we almost surely
have 〈φ1|ψ1〉 �= 0, and moreover, 〈φ1|ψk〉 = 0 if and only if k �= 1. By symmetry, similar
product states can be found for all members of �, which means condition 4.2 is satisfied. The
members of � are therefore almost surely locally unambiguously distinguishable. �

4.1. General versus product pure states

The members of �, since they are chosen at random, will be highly entangled in large
dimensions. It is interesting to compare this situation with a more restricted case: sets of
randomly chosen product states. We define a random product state as follows. For a given
Hilbert space H = ⊗

j Hj with dimHj = dj , a random product state φ of H is a tensor
product state |φ〉 = ⊗

j |φj 〉 where each state φj is an independently chosen random pure
state of Hj .

It has been known for some time that almost all sets of n random product states form
a (nonorthogonal) unextendible product basis if and only if n � 1 +

∑
j (dj − 1) (see, e.g.,

DiVincenzo et al [34]). An unextendible product basis is a set of product states with a
span whose complementary subspace contains no product states. The following is then an
immediate consequence of Chefles’ condition.

Theorem 4.4. Let H = ⊗
j Hj be a multipartite Hilbert space where dimHj = dj . Then

the members of almost all sets of n product pure states of H are locally unambiguously
distinguishable, if and only if

n � 1 +
∑

j

(dj − 1). (37)

Comparing this criterion with that for random general pure states we see something
striking: they are identical. Random general pure states are near-maximally entangled; one
might reasonably expect that this makes them harder to distinguish using LOCC. At least in
respect of unambiguous distinguishability, this is not the case.

4.2. Multiple separated copies

There may be more than one copy of the system whose state we are trying to identify. Suppose
there are c identical copies of an unknown state ψ? ∈ �. The larger c gets, the easier
distinguishing members of � becomes.

The LOCC constraint prohibits joint quantum operations between parties but not between
copies, so a party with access to multiple copies of the same subsystem could measure them all
jointly. It is interesting to impose an additional constraint on the parties, however, and insist
that separate operations be performed on every subsystem from every copy—subsystems from
different copies may not be measured jointly. The copies are then called separated copies.
Equivalently, we extend the scenario of one copy shared between m parties to that of c copies
shared between cm parties, all communicating freely.

This constraint is natural from a practical perspective, especially in a laboratory context.
Copies of a system might be generated and studied at different times. Even if not,
whatever technical restriction forbids joint measurements within a copy could similarly restrict
measurements between copies. A relevant example is quantum state tomography, which
is almost exclusively performed on many copies of a system using completely separable
measurements [35, 36].

12
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Theorem 4.5. Let H = ⊗
j Hj be a multipartite Hilbert space with dimHj = dj , and let c

be any positive integer. Then the members of almost all sets of n pure states of H are locally
unambiguously distinguishable, given c separated copies of the unknown member, if and only
if

n � 1 + c
∑

j

(dj − 1). (38)

Proof. Simply consider H⊗c = ( ⊗m
j=1 Hj

)⊗c
as the Hilbert space of cm separate parties.

The proof is then exactly the same as that for theorem 4.3, except theorem 3.4 needs to be
replaced by corollary 3.6. �

How good are separable measurements at producing unambiguous data? We have seen
that above a low threshold size, the members of almost all sets � are locally unambiguously
indistinguishable. With sufficiently many copies, however, the members of any finitely
large � can be unambiguously distinguished. The minimum number of copies this requires
gives a measure of how indistinguishable � is. Contrasting the minima for separable and
global measurements shows how poor the former are at obtaining that ‘quintessentially
quantum’ unambiguous data. As the dimension of the measured system increases, separable
measurements consume exponentially more copies.

Corollary 4.6. Let H = ⊗
j Hj be a multipartite Hilbert space with dimHj = dj . Then for

almost all sets of n pure states of H,

c � n − 1∑
j (dj − 1)

(39)

identical copies are required to locally unambiguously identify an unknown member, if these
copies are separated.

What does this imply about the feasibility of unambiguous discrimination on higher
dimensional multipartite systems? Suppose we grow the number of subsystems, m. For any
fixed number of copies, the number of random states that can be unambiguously distinguished
globally grows exponentially with m. But far from being fixed, the number of copies
required to emulate these global measurements separably also grows exponentially. A linearly
independent set of m-qubit states, for example, has up to 2m members. To unambiguously
distinguish this many states using single qubit measurements requires

⌈
2m−1

m

⌉
copies of the

system. Globally, one is always enough!
Of course with many copies of a quantum system, a great deal can be learned about its

state without using unambiguous protocols. As measurement results accumulate, analysis of
� will reveal most states becoming increasingly unlikely and a select few candidates becoming
highly probable. What will remain elusive is certainty. In theory (if admittedly not in practice)
absolute certainty is obtainable by global measurements, and exponentially harder to reach
with separable operations.

5. Discussion

Almost all subspaces of multipartite Hilbert spaces are completely entangled, provided they
are small enough. We have precisely quantified ‘small enough’, and it is very large (18). For
any m-qubit system, almost all subspaces of dimension 2m − m − 1 or less are completely
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entangled. Random and entangled subspaces are useful in a number of contexts, and we
hope our result will find application elsewhere. It should certainly make them easier to
find! One application we have pursued ourselves, obtaining a simple rule governing the local
unambiguous distinguishability of almost all sets of quantum states.

We have only discussed pure states, but our results have implications for random mixed
states as well. Hayden et al [7] showed that general mixed states of rank equal to the span
of a ‘maximally entangled’ random subspace, have near maximal entanglement of formation
but near zero distillable entanglement, making them nearly bound entangled. Cubitt et al [21]
observe their constructions can be used to create similar mixed states of much greater rank
with high Schmidt measure. Our results suggest this property of mixed states is generic.

Of the many questions left open, the most obvious concerns quantification. Precisely
how entangled are the states in a completely entangled random subspace? The Schmidt rank
provides one measure in bipartite situations. What of other measures, such as the entanglement
of formation, or of distillation? Whereas the maximally entangled subspaces of Hayden et al
contain only states with high entropy of entanglement, our much larger subspaces sacrifice
this property as they grow. The largest completely entangled subspaces contain states that
are only slightly entangled. Thanks to corollary 3.11, we can chart the stepwise descent of
random subspaces’ Schmidt rank as their dimension increases. It would be interesting to see
how other entanglement measures behaved.

Distinguishability can be quantified as well. If a set of random states can be locally
unambiguously discriminated, with what probability of success? If not, how many copies
would provide a better than even odds chance? Unfortunately, we still do not have good
bounds on the probability with which global unambiguous discrimination can be performed
on random states, so answers to these local questions remain out of reach. Good progress has
been made on the optimal global distinguishability of random states [8], however; so both the
unambiguous global problem and the optimal local problems are tantalizing.

We can make one locally unambiguous observation, however. If the members of a set
of pure states can be locally unambiguously discriminated with nonzero probability, then
they can certainly be locally unambiguously discriminated with some finite, nonnegligible
probability. The probability overlap of a random state ψi with some arbitrary product state
that identifies it, φi , will have mean |〈φi |ψi〉|2 = 1/D, where D is the dimension of the overall
system. (To see this, consider writing the random state in an independently fixed product
basis.) As D becomes large, concentration of measure effects transform this average into
a very reliable estimate. Thus selecting an arbitrary set of product states, {φi}, satisfying
Chefles’ condition 4.2, we can build an LOCC protocol around them that stands a finite
chance of success: {wi |φi〉〈φi |, 1 − ∑

i wi |φi〉〈φi |}i . The weights wi must be considered
because the measurement must be LOCC implementable, but these can be quite large. For
instance if for all i, wi = 1

n
, the POVM is automatically LOCC decomposable irrespective

of {φi}. Such a protocol simply guesses the state’s identity in advance, then performs binary
local measurements to confirm or refute this hypothesis. This yields a success probability of
about 1

Dn
. There will be much better choices of measurement, of course, but even arbitrary

successful protocols succeed a noticeable fraction of the time.
If n random product pure states are locally unambiguously distinguishable then so are n

random general pure states, and vice versa. Entanglement does not matter for determining
whether or not the states are distinguishable, but perhaps the two sets can be distinguished
with different probabilities of success. If the probability for general states were lower, we
might recover some of our intuition about entanglement. We cannot judge this question now,
but observe that arbitrary successful protocols show no sign of favoring separable states. This
is not conclusive evidence one way or the other, but it reinforces that there is no evidence
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for random highly entangled states being harder to locally unambiguously distinguish than
random product states.
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